Series MCRH y MCRV

Series MCRH y MCRV

Características Generales.

Los condensadores por aire **MOSKAR** de la **Serie MCRH** con flujo de aire horizontal y los de la **Serie MCRV** de flujo de aire vertical, están construidos en tubos de cobre con aletas integrales de aluminio, realizándose la unión de caño y aletas mediante expansión hidráulica del tubo, lográndose un perfecto contacto entre ambos. El elevado coeficiente de transmisión de calor así obtenido, conjuntamente con el diseño y la adecuada relación de superficies entre tubo y aletas (garantiza un rendimiento operativo de excepción.

Pueden ser utilizados indistintamente con cualquiera de los refrigerantes halogenados más empleados en nuestro mercado como el **R-12**, **R-134A**, **R-22**, **R-502** y **R-507**,pudiendo ser ubicados a la intemperie, ya que los motores de sus ventiladores son 100% blindados.

Selección del Condensador Requerido

1º - Debemos conocer el rendimiento del compresor a las temperaturas de trabajo de condensación y evaporación seleccionados conforme a nuestros requerimientos, y la temperatura en época estival del lugar donde se ha de instalar el condensador.

Por ejemplo: Suponemos que la temperatura de evaporación seleccionada es de -10°C y que el compresor para este rango de operación rinde 7200 frig/h. Pensamos que ha de operar en Buenos Aires y por ello la temperatura de condensación será de 40°C

2°- En el **Gráfico A** (Páginas 3 y 4) vemos que, considerando la temperatura de evaporación de -10°C y la condensación de 40°C se determina un Factor de Corrección (FC) que corresponde para el dimensionamiento del condensador de 1,31. Es decir que el total del calor a disipar por el condensador es igual al rendimiento del compresor multiplicado por el Factor de Corrección.

Continuando el ejemplo: 7200 frig/h x 1,31 = 1432 frig/h, que es calor total a disipar por el condensador, teniendo en cuenta el rendimiento del compresor más el calor adicionado por el trabajo de compresión.

Debemos también tener en cuenta que si se trata de un motocompresor hermético o semihermético donde se usen los gases de succión para disipar el calor generado por el motor eléctrico, a su vez el total recién determinado lo debemos multiplicar por 1,2 lo que nos dará la capacidad total necesaria en el condensador para el supuesto de emplear motocompresor hermético o semihermético.

En nuestro ejemplo consideramos que se trata de un compresor donde no se utilizan los gases de succión para refrigerar el bobinado del motor. Por ello, y considerando que 1frig/h = 1 Kcal/h tendremos que el calor total a disipar en el condensador es de 9432 Kcal/h.

 3° - Consideramos ahora la temperatura de condensación seleccionada (40° C) y la temperatura ambiente para nuestro caso (32° C), obteniendo la diferencia de temperatura (t) entre la temperatura del aire a la entrada del condensador y la de condensación.

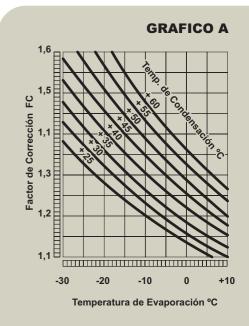
En nuestro ejemplo: T de condensación - T de entrada del aire = t = 40°C - 32°C = 8°C.

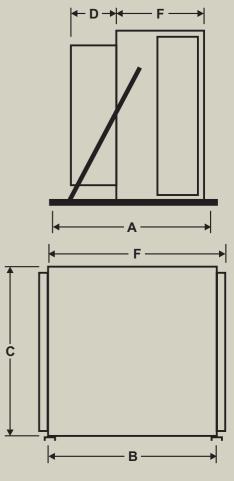
4º - Con esta diferencia de temperatura (8ºC) y la cantidad de calor a disipar obtenida anteriormente (9432 Kcal/h) buscamos en las Tablas de Especificaciones Técnicas un condensador cuya capacidad cubra nuestro requerimiento.

En nuestro ejemplo, observamos los modelos **MCRH 50** y **MCRV 50**, que con un t de 8°C son capaces de disipar 10000 Kcal/h por lo que cualquiera de ellos satisfacen nuestras necesidades. Cuando el condensador ha de ser instalado en zonas donde las diferencias de temperatura ambiente enter las estaciones de verano e invierno son muy elevadas, y dado que debemos conservar una perfecta relación entre todos los componentes de la instalación frigorífica, especialmente el rendimiento de la válvula de expansión, aconsejamos instalar un condensador que tenga doble ventilador a los efectos de reducir la capacidad de condensación retirando de servicio uno de ellos en la época invernal.

A pedido pueden fabricarse condensadores para distintos requerimientos.

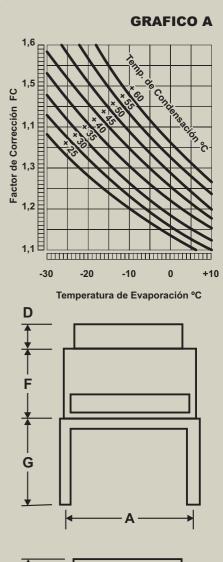
Todos estos datos están sujetos a modificaciones sin previo aviso.

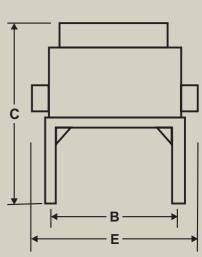



Serie MCRH

Especificaciones Técnicas - Serie MCRH (Con Flujo de Aire Horizontal).

	i											1		
MODELO		15	20	28	30	50	70	100	120	150	200	250	300	400
Rendimiento (Kcal/h)	t 12°C	3600	6200	11400	10800	15000	21000	28800	36000	43800	68500	100000	108000	144000
	t 10°C	3000	5200	9500	9000	12500	17500	24000	30000	36500	57000	84900	90000	122000
	t 8°C	2400	4100	7600	7200	10000	14000	19200	24000	29200	46000	66500	72000	96000
Sup. de Transmisión (m²)		12	21	38	35	49	69	103	120	145	230	315	390	498
Cant. de Ventiladores		1	1	2	1	1	1	1	1	2	2	3	2	3
Diámetro de Pala (mm)		355	400	400	450	520	630	630	630	630	630	630	710	710
Potencia de Motor (CV)		0.17	0.17	0.17	0.33	1.00	1.50	1.50	1.50	1.50	1.50	1.50	3.0	3.0
Consumo Total (kw/h)		0.13	0.13	0.26	0.25	0.75	1.13	1.13	1.13	2.25	2.25	3.40	4.50	6.80
Caudal de Aº Total (m³/min.)		10	12	25	50	200	300	300	300	600	600	850	850	1200
Tensión de Motor (V)		220	220	220	220 380	380	380	380	380	380	380	380	380	380
Nivel Sonoro (dB)		63	63	68	71	78	81	81	81	86	86	88	88	90
Dimensiones en mm	Α	120	140	140	560	560	660	660	660	660	660	660	660	660
	В	640	640	1100	610	740	840	840	890	1640	1740	2440	2510	3010
	С	420	520	520	610	690	840	840	840	920	840	840	1000	1200
	D	140	140	140	200	200	220	220	220	220	220	220	260	260
	Е	650	650	1150	750	880	980	980	1030	1780	1880	2580	2650	3150
	F	220	250	250	350	350	350	430	430	350	430	430	430	430
Peso (Kg)		16	19	38	49	68	80	98	138	176	208	278	315	535




SERIE MCRV

Especificaciones Técnicas - Serie MCRV (Con Flujo de Aire Vertical),

MODELO		50	70	100	120	150	200	250	300	400
Rendimiento (Kcal/h)	t 12°C	15000	21000	28800	36000	43800	68500	100000	108000	144000
	t 10°C	12500	17500	24000	30000	36500	57000	84900	90000	122000
	t 8°C	10000	14000	19200	24000	29200	46000	66500	72000	96000
Sup. de Transmisión (m²)		49	69	103	120	145	230	315	390	498
Cant. de Ventiladores		1	1	1	1	2	2	3	2	3
Diámetro de Pala (mm)		520	630	630	630	630	630	630	710	710
Potencia de Motor (CV)		1.00	1.50	1.50	1.50	1.50	1.50	1.50	3.0	3.0
Consumo Total (kwh)		0.75	1.13	1.13	1.13	2.25	2.25	3.40	4.50	6.80
Caudal de Aº Total (m³/min.)		200	300	300	300	600	600	850	850	1200
Tensión de Motor (V)		380	380	380	380	380	380	380	380	380
Nivel Sonoro (dB)		78	81	81	81	86	86	88	88	90
Dimensiones en mm	Α	620	760	760	760	820	760	760	900	1080
	В	740	840	840	890	1640	1740	2440	2510	+1500 +1500
	С	980	1020	1100	1180	1070	1180	1180	1330	1320
	D	200	220	220	220	220	220	220	260	260
	Е	880	980	980	1030	1780	1880	2580	2650	3180
	F	350	380	460	460	350	460	460	460	460
	G	400	400	400	500	500	500	600	600	600
Peso (Kg)		80	95	113	158	206	242	315	315	535

MOSKAR S.A.I.C.- Santander 5662 (1439) Cap. Fed. - República Argentina Tel.: 4638-1260/1261/2835/3743 • 4601-1683 • 4921-2745 • Fax: 4602-5371